鸡兔同笼问题是数学拓展题目中比较经典的题目之一,往往会难倒不少的学生,但是掌握了一定的技巧就迎刃而解了。
鸡兔同笼解题方法
解法一:列表法
(1)逐一列表法:就是把鸡和兔从1到35分别枚举,然后计算脚的数量,等于94只时就能找到答案,但数据量大时会比较繁琐。
(2)跳跃列表法:枚举的时候,根据脚数的值,跳跃枚举,简化枚举的数量。
(3)取中列表法:先尝试鸡和兔的数量相等或者接近,再根据脚数进行调整。
以上这三种列表方法,虽然可以求出结果,但是都过于繁琐,解题时我们一般都不会使用。
解法二:假设法
(1)假设笼子里全是鸡
总脚数:35×2=70(只)
总差:94-70=24(只)
单位差:4-2=2(只)
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(2)假设全是兔
总脚数:35×4=140(只)
总差:140-94=46(只)
单位差:4-2=2(只)
鸡:46÷2=23(只)
兔子:35-23=12(只)
答:鸡有23只,兔子有12只。
以上两种假设方法,是我们在低年级求解鸡兔同笼问题时经常采用的方法。
解法三:金鸡独立法
(1)假设让鸡抬起一条腿,兔子抬起两条腿
地上总脚数:94÷2=47(只)
每多一只兔子脚数就比头数多1
兔子:47-35=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(2)假设鸡和兔都抬起两条腿
地上总脚数:94-2×35=24(只)
地上的脚都是兔子的
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(3)假设只让兔子抬起两只脚
此时地上每只鸡和兔子地上都有2只脚
地上总脚数:2×35=70(只)
兔子抬起脚总数:94-70=24(只)
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
解法四:方程法
(1)设鸡有x只,则兔有(35-x)只
依题意:2x+4×(35-x)=94
x=2335-x=35-23=12
答:鸡有23只,兔子有12只。
(2)设兔有x只,则鸡有(35-x)只
依题意:4x+2×(35-x)=94
x=1235-x=35-12=23
答:鸡有23只,兔子有12只。
鸡兔同笼口诀顺口溜
1、第一问题口诀:鸡兔同笼也不难,假设是兔记心间。假设实际比比看,鸡与兔换一换,两差相除把鸡算。
2、第二问题口诀:鸡兔同笼也不难,假设多的记心间。假设实际比比看,多与少换一换,差除足和少的算。
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
举例:鸡免同笼,有头36,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24求鸡时,假设全是兔,则鸡数=(4×36-120)÷(4-2)=12
鸡兔同笼经典例题
例1、鸡兔同笼共有32只,共有腿100条,有几只鸡?几只兔?
例2、2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?
例3、哥哥领回工资131元,全部是贰元和伍元的票面,一共有40张。贰元和伍元的各有多少张?
例4、东街小学师生35人,带土筐40只,帮助工地去运土。已知教师每人桃两只土筐,学生两人抬一只,教师学生各有几人?
例5、某水果店以同一种价格购进广柑500千克,出售时按质论价,优等广柑售价比购进时每千克贵1角;次等广柑售价比购进时每千克便宜2角。售完后盈利是41元。优等和次等广柑各有多少千克?
例6、鸡兔同笼,鸡比兔多26只,足数共274只,鸡兔各几只?
例7、1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁。四年后(2002年)父亲的年龄是弟弟年龄的4倍,母亲的年龄是哥哥的年龄的3倍,那么当父亲的年龄是哥哥的年龄的3倍时,是哪一年?
例8、蜘蛛有8条腿,没有翅膀。蝉有6条腿1对翅膀,蜻蜓有6条腿2对翅膀。现有这三种昆虫36只,共有236条腿,40对翅膀。每种昆虫各有几只?