三角形是几何图形中最常见是图形之一,是由三条线段组成的闭合图形,这三条线段交三角形的边。三角形的三条边具有一定的关系,也即是两条边之和大于第三边,之差小于第三边。
三角形三边关系
三角形三边的关系是:任意两边的和都大于第三边。任意两边的差都小于第三边。
当学了勾股定理和弦定理之后,三角形三边的关系可更进了一步。锐角三角形中:任意两边的平方和都大于第三边的平方,直角三角形中:两条直角边的平方和等于斜边的平方,钝角三角形中:较短的两边之和小于第三边的平方。
三角形的基本定理有哪些
1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度。
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。直角三角形斜边的中线等于斜边的一半。
5.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的两个内角之和。
6.一个三角形最少有2个锐角。
7.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。
8.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。
9.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么a²+b²=c²。那么这个三角形就一定是直角三角形。
10.三角形的外角和是360°。
11.等底等高的三角形面积相等。
12.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
13.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
14.在△ABC中恒满足tanAtanBtanC=tanA+tanB+tanC。
15.三角形的一个外角大于任何一个与它不相邻的内角。
16.全等三角形对应边相等,对应角相等。
相似三角形的性质和定理
1.一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。
2.如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。
3.如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。
4.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。